IBM Cognos Software Development Kit
Version 11.0.0

Dynamic Query Extensibility Developer
Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
25.

Product Information

This document applies to IBM Cognos Software Development Kit Version 11.0.0 and may also apply to subsequent
releases.

Licensed Materials - Property of IBM

© Copyright International Business Machines Corporation 2015, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

31 40T 11 o { Lo T TR v
Chapter 1. Overview of dynamic query extensibility......cccccoceiiiiniiiiiiiieiieiieiencnaes 1
Types of dynamic query extensibility fFUNCLIONS.......ccvii i 1
Implementing and using dynamic query extensibility fUNCLIONS.......cccooievviiiiiiiniiinieeeeeee e 1
Sample dynamic query extensibility fUNCLIONS......c..oiiciiiie e e e 2
Chapter 2. Creating dynamic query extensibility functions........ccccccceiieiieienieniannnann. 3
Writing dynamic query extensibility fUNCLIONS......ccuiiieiiieceece e e 3
WHItING SCALAr FUNCIIONS....iieiiiie ettt et e et e e s be e e e b e e e e be e e e baeeeabaeessseeeenseaasnseeesnsees 3
Writing aggregate fUNCHIONS.......ii ettt e e bt e e et e e s ba e e sbae e sebaeesbaeesnseeanans 5
WIHING tADLE fUNCHIONS...eiieiee ettt e e ate e st e e e bt e e s rte e eeraee s seeesnseaenans 8
Creating the deployment desCriptor fil.. .t e e e e ae e e aae e e saaeens 9
Creating the Java ArChIVE filB.....uu et ae e e ae e e abe e e s aba e e nsaeeenreas 10
Chapter 3. Deploying dynamic query extensibility functions........cccccceveienianiennnnnne. 11
Chapter 4. Programming considerations when creating dynamic query
extensibility fUNCHIONScc.ieiiiiiiiiiccrcrr e e s s sasan e 13
LR p] o] ol A7 o TN oo g1 V7T =] o] o TSRS 13
(O1V=T g oF: Ta [=Te I (VT3 Lot o T3 =3O OO TR OO S RUP R PUPRRPTRR 13
VarAIC FUNCHIONS. .ceitieiecece ettt et e a e s be e sab e sabe e sbe e ssteesbaesaseebaesateensaessseenses 15

137/ 1= TN 17
Appendix B. Implicit data type conversion rules.........ccccecieiiniiniiniieiienieiieiiecencnnes 19
Appendix C. BNF grammar description for the deployment descriptor file............. 21
N o7 o= - 25
11T L= N 29

Introduction

This document is intended for use with IBM® Cognos® Analytics. It describes how to write functions that
are called during the execution of dynamic queries in IBM Cognos Analytics - Reporting and in IBM
Cognos Framework Manager.

Audience

To use the IBM Cognos Dynamic Query Extensibility Developer Guide effectively, you must be familiar with
the following items:

« Dynamic query mode in IBM Cognos Analytics.
- Programming languages that can be used to write dynamic query extensibility functions..

Finding information

To find product documentation on the web, including all translated documentation, access IBM
Knowledge Center (http://www.ibm.com/support/knowledgecenter).

Forward-looking statements

This documentation describes the current functionality of the product. References to items that are not
currently available may be included. No implication of any future availability should be inferred. Any such
references are not a commitment, promise, or legal obligation to deliver any material, code, or
functionality. The development, release, and timing of features or functionality remain at the sole
discretion of IBM.

Accessibility features

Consult the documentation for the tools that you use to develop applications to determine their
accessibility level. These tools are not a part of this product.

IBM Cognos HTML documentation has accessibility features. PDF documents are supplemental and, as
such, include no added accessibility features.

© Copyright IBM Corp. 2015, 2018 v

http://www.ibm.com/support/knowledgecenter
http://www.ibm.com/support/knowledgecenter

vi IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Chapter 1. Overview of dynamic query extensibility

Dynamic query extensibility provides a mechanism for extending the functionality of the dynamic query
engine in IBM Cognos Analytics by adding functions that can be evaluated locally by the dynamic query
engine.

Dynamic query extensibility is useful under the following conditions:

« Cognos built-in functions are not available to meet your business objectives.

- You do not want to, or cannot, put the functionality inside the database.

These functions can be written in SQL, in the Java™ programming language, or in JSR-223 scripting
languages that can be run by the Java virtual machine. In this guide we provide examples of functions that
use SQL and the Java programming language.

The dynamic query extensibility framework in Cognos Analytics is based upon the ISO/IEC 9075-13 SQL
Routines and Types using Java Programming Language (SQL/JRT) extension to the SQL standard. This
extension allows SQL applications to invoke static Java methods as routines.

Types of dynamic query extensibility functions

You can write three types of dynamic query extensibility functions.

Scalar functions
Scalar functions accept zero or more arguments and return a single value, which may be a null value.
Scalar functions are invoked in the same way as built-in dynamic query functions, such as abs or
floor.. They are referenced in expressions in models and reports in the same manner as Cognos
built-in or database scalar functions.

Aggregate functions
Aggregate functions iterate over a set of values and return a single value, which may be a null value.
Aggregate functions are invoked in the same way as built-in dynamic query aggregate functions, such
as avg or count.. They can be included as part of an expression in an SQL statement or a report
specification.

Table functions
Table functions accept zero or more arguments and return a table of data. Table functions can be
invoked in the FROM clause of an SQL statement and exposed in a query subject in a model or report.

Dynamic query extensibility supports overloading and polymorphism.

Implementing and using dynamic query extensibility functions

Implementing and using dynamic query extensibility functions in IBM Cognos Analytics is a collaborative
effort between functions writers, system administrators, and report authors.

Function writer
The function writer performs the following tasks:

1. Writes and tests the code that implements the functions.

2. Creates deployment descriptor files that specify the interface between the functions and the dynamic
query engine in the IBM Cognos Analytics server.

3. Package the class files and script files implementing your functions, and deployment descriptor files in
a Java Archive (JAR) file.

These tasks are described in detail in Chapter 2, “Creating dynamic query extensibility functions,” on page
3.

© Copyright IBM Corp. 2015, 2018 1

System administrator

The system administrator deploys the Java Archive files to the Cognos Analytics server. This task is
described in Chapter 3, “Deploying dynamic query extensibility functions,” on page 11.

Report author

The report author invokes the functions in expressions used in models and reports. The sample functions
described in “Writing dynamic query extensibility functions” on page 3 include examples of how these
functions are used in expressions.

Sample dynamic query extensibility functions

An installation of Cognos Analytics includes sample dynamic query extensibility functions.

A Java archive, samples. jar, is installed in <installation_location>\v5dataserver\lib\ext.
The Java archive also includes the Java source files.

The sample functions are described in “Writing dynamic query extensibility functions” on page 3

2 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Chapter 2. Creating dynamic query extensibility
functions

The following topics illustrate the process for creating dynamic query extensibility functions. Examples
are shown that use SQL and the Java programming language.

Writing dynamic query extensibility functions

There are three categories of dynamic query extensibility functions, scalar functions, aggregate functions,
and table functions, that are described in the following topics.

Writing scalar functions

Scalar functions accept zero or more arguments and return a single value, which may be a null value. They
are invoked in the same way as any scalar function in a dynamic query or a database query. They can be
included as part of an expression in a model, a report specification. or a Cognos SQL statement.

Scalar functions can be written in SQL or the Java programming language. Java scalar functions are
implemented as static methods of a class. The input parameters and returned value can be any Java type
that maps to a supported dynamic query extensibility data type. See Appendix A, “Data type conversions
from JDBC/SQL data types to Java data types,” on page 17 for a list of supported data type mappings.

SQL scalar function example

SQL scalar functions are contained in a deployment descriptor file. This is an example of an SQL scalar
function that convert temperatures from Celsius to Fahrenheit.

CREATE FUNCTION CELSIUS_TO_FAHRENHEIT(C INTEGER)
RETURNS FLOAT

LANGUAGE SQL

CONTAINS SOL

DETERMINISTIC

RETURN (C * 9) / 5 + 32;

This function can be used in a SQL statement like any other scalar function. For example,

SELECT CELSIUS, CELSIUS_TO_FAHRENHEIT(CELSIUS) FAHRENHEIT
FROM TEMPERATURES

This query produces the following result.

Table 1: SQL scalar function result

CELSIUS FAHRENHEIT
0 32.0
100 212.0

A screenshot using this sample function is shown here.

© Copyright IBM Corp. 2015, 2018 3

Celsius to Fahrenheit Conversion

“"CELSIUS =~ FAHRENHET

<CELSIUS:> = <FAHRENHEM=
<CELSIUS:> = <FAHRENHEM:=
<CELSIUS> ~<FAHRENHEM=

Data Item Expression - FAHRENHEIT Help €3

Name: |FAHRENHEIT |

Available Components: =R=RE" | R
Expression Definition:
~ B sau [CELSIUS_TO_FAHRENHEIT(CELSIUS)
M ceLsus
4
@Infﬂrmaﬁon:

o8 T 1T i S Tips Errors

Figure 1: Sample function use in Cognos Reporting

Java scalar function example

This Java example formats currency based on country codes. The Java code is included in the
Format.java sample program.

The following snippet in a deployment descriptor file is associated with this example.

CREATE FUNCTION formatCurrency(V DECIMAL(10,2), LANG VARCHAR(32), COUNTRY
VARCHAR(32))

RETURNS VARCHAR(32)

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'thisjar:udf.samples.Format.formatCurrency';

The external name is the fully qualified method name (package.class.method) that contains the
implementation of the logic for the function

4 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

This function can be used in a SQL statement like any other scalar function. For example,

SELECT PNAME, PRICE, formatCurrency(PRICE, 'en', 'US') FORMATTED_PRICE
FROM PRODUCTS

This query produces the following result.

Table 2: SQL scalar function result

PNAME PRICE FORMATTED_PRIC
E

Bolt 1.40 $1.40

Screw 1.50 $1.50

Writing aggregate functions

Aggregate functions iterate over a set of values, sharing the same values in a set of grouping columns in a
GROUP BY or PARTITION clause, and return a single value per group or partition, which may be a null
value. They are invoked in the same way as built-in dynamic query aggregate functions. They can be
included as part of an expression in an SQL statement or a report specification.

Java aggregate functions

Java aggregate functions must contain at least the following methods, with the exception of the remove

method, which is optional

initialize
The initialize method must return an instance of a class that implements the
java.io.Serializable interface. The dynamic query engine uses this method to initialize the
computation of the aggregation. This method is invoked once for each group or partition that the
dynamic query engine is aggregating. A state object is returned.

The method signature is
public static Serializable initialize()

iterate
The iterate method accumulates the aggregate values and is invoked once for each value in the group
that is being aggregated. The dynamic query engine calls this method after calling the initialize
method. The implementation of this method should update the state of the instance to reflect the
accumulation of the argument value being passed in.

The first parameter of the iterate method is the object returned by the initialize method.

The method signature is
public static void iterate(Serializable state, v <type> [, v <type>, ...])

remove
The remove method removes a value from the aggregation. The implementation of this method should
update the state of the instance to reflect the accumulation of the argument value being passed in.
For an example where this method is required, see Example where the remove method is required.

The first parameter of the remove method is the object returned by the initialize method.

The method signature is
public static void remove(Serializable state, v <type> [, v <type>, ...])

getResult
This method returns the current result of the aggregation.

Creating dynamic query extensibility functions 5

The parameter of the getResult method is the object returned by the initialize method.
The method signature is
public static <type> getResult(Serializable state)
terminate
This method completes the aggregate computation and releases the resources used by the function.
The parameter of the terminate method is the object returned by the initialize method.

The method signature is

public static void terminate(Serializable state)

Java aggregate function example

This Java aggregate function performs progressive multiplication on all of its input values.. The Java code
isincluded in the Multiply.java sample program.

The following lines in a deployment description file are associated with this example.

CREATE AGGREGATE multiply(n INTEGER)

RETURNS DOUBLE PRECISION

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'thisjar:udf.samples.Multiply’;

This aggregate can be used in a SQL statement like any other aggregate function or window function.

For example, consider the following sample data for the SEQUENCES table.

Table 3: SEQUENCES table
SEQUENCE VALUE
S1 32

S1 8

S2 10

S2 20

S2 4

We can use this aggregate as a standard aggregate within a GROUP BY query as follows:
SELECT SEQUENCE, MULTIPLY(VALUE) RESULT
FROM SEQUENCES
GROUP BY SEQUENCE

This query produces the following result.

Table 4: Aggregate query result

SEQUENCE RESULT
S1 256
S2 800

6 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

We can also use this aggregate as a window function. For example,

SELECT SEQUENCE, VALUE, MULTIPLY(VALUE) OVER () RESULT
FROM SEQUENCES

This query produces the following result.

Table 5: Window query result

SEQUENCE VALUE RESULT
S1 32 256
S1 8 256
S2 10 800
S2 20 800
S2 4 800

Example where the remove method is required

Consider the MULTIPLY aggregate defined previously. It is called in the following SQL snippet.

SELECT SEQUENCE,

VALUE,

MULTIPLY (VALUE) OVER (

PARTITION BY SEQUENCE
ORDER BY VALUE ROWS BETWEEN 1 PRECEDING AND CURRENT ROW

) RESULT

FROM SEQUENCES

This query produces the following result.

Table 6: Example using the remove method
SEQUENCE VALUE RESULT
S1 8 8.0

S2 32 256.0
S3 4 4.0

S4 18 40.0

S5 29 200.0

In order for this query to work, the optional remove method for the aggregate must be implemented. As
the sliding window changes (ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) for each row
processed, this method is invoked to remove the value leaving the window. For example, assume the
current window for within partition S2 consists of the values (4, 10). When the window moves to values
(10, 20), the remove method is invoked to remove the value 4. The iterate method is then called to add
the value 20 to the aggregate state.

Creating dynamic query extensibility functions 7

Writing table functions

Table functions accept zero or more arguments and return a table of data. Table functions can be invoked
in the FROM clause of a Cognos SQL statement.

SQL table function example

SQL table functions are contained in a deployment descriptor file. This is an example of an SQL table
function that produces a result set consisting of parts and supply information

CREATE FUNCTION parts_supplied()
RETURNS TABLE(PNO CHAR(2), PNAME CHAR(10), SNO CHAR(2), QTY INTEGER)
LANGUAGE SQL
PARAMETER STYLE SQL
READS SQL DATA
DETERMINISTIC
RETURN
SELECT P.PNO, P.PNAME, SP.SNO, SP.QTY
FROM PARTS P, SUPPLY SP
WHERE P.PNO = SP.PNO;

This table function can be used in the FROM clause of a SQL statement. For example,

SELECT PNO, PNAME, SNO, QTY
FROM TABLE(parts_supplied()) T
WHERE QTY > 200

Java table functions

Java table functions are implemented as static methods whose return type is an object of a class that
implements the java.sql.ResultSet interface. The input parameters can be any primitive types or
objects that map to a supported dynamic query extensibility data type. See Appendix A, “Data type
conversions from JDBC/SQL data types to Java data types,” on page 17 for a list of supported data type
mappings.

Java table function example

This function enumerates all of the locale information for the currently running Java Runtime
Environment. The function returns a row for each locale consisting of the country, language, country code,
language code, and currency code. The Java code is included in the Locales. java sample program.

The following lines in a deployment description file are associated with this example.

CREATE FUNCTION enumeratelLocales()
RETURNS

TABLE(

COUNTRY VARCHAR(128),

"LANGUAGE" VARCHAR(128),
COUNTRY_CODE VARCHAR(32),
LANGUAGE_CODE VARCHAR(32),
CURRENCY_CODE VARCHAR(32)

)
LANGUAGE JAVA

PARAMETER STYLE JAVAEXTERNAL NAME
'thisjar:udf.samples.Locales.enumeratelocales';

This table function can be used in the FROM clause of a SQL statement like any other table function. For
example

SELECT *
FROM TABLE(enumeratelocales()) T

8 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Creating the deployment descriptor file

The deployment descriptor file contains the source code for functions written in SQL, as well as input and
output parameters and the method name for functions written in the Java programming language.

A simple deployment descriptor file is shown here, based on the SQL and Java functions described in
“Writing scalar functions” on page 3.

SQLActions[] = %
"BEGIN INSTALL
CREATE FUNCTION CELSIUS_TO_FAHRENHEIT(C INTEGER)
RETURNS FLOAT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
RETURN (C * 9) / 5 + 32;

CREATE FUNCTION formatCurrency(V DECIMAL(10,2), LANG VARCHAR(32),
COUNTRY VARCHAR(32))
RETURNS VARCHAR(32)
LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME 'thisjar:udf.samples.Format.formatCurrency';
END INSTALL"

ky

Each deployment descriptor file can contain any number of entries for SQL and Java functions .
You should note the following issues when creating deployment descriptor files.

« The file name extension for the deployment descriptor file is ddl.
« Function names are case-insensitive.

« SQL keywords used as table or column names must be delimited as shown in the following example
with the column name LANGUAGE.

CREATE FUNCTION enumeratelLocales()
RETURNS

TABLE (

COUNTRY VARCHAR(128),

"LANGUAGE" VARCHAR(128),
COUNTRY_CODE VARCHAR(32),
LANGUAGE_CODE VARCHAR(32),
CURRENCY_CODE VARCHAR(32)

)

LANGUAGE JAVA

PARAMETER STYLE JAVAEXTERNAL NAME
"thisjar:udf.samples.lLocales.enumeratelocales';

« When writing SQL functions, there can be any number of lines between the RETURN keyword and
closing semi-colon(;).

« Square brackets, [and], must be replaced by the trigraph equivalent codes, which are ??(and ??),
respectively.

e The input and output parameter types are Cognos SQL types. A table mapping Cognos SQL types to Java
types can be found in Appendix A, “Data type conversions from JDBC/SQL data types to Java data
types,” on page 17

« A description of the structure of the deployment descriptor file in Backus—Naur Form can be found in
Appendix C, “BNF grammar description for the deployment descriptor file,” on page 21.

Creating dynamic query extensibility functions 9

Creating the Java Archive file

The class files and .deployment descriptor files associated with dynamic query extensibility functions are
packaged in a Java Archive (JAR) file.

The manifest for the JAR file contains a section for each data descriptor file in the package. The example
manifest from the samples. jar file (see “Sample dynamic query extensibility functions” on page 2) is
shown here.

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.8.4
Created-By: jvmwi3260sr10-20111207_96808 (IBM Corporation)

Name: udf/samples/samples.ddl
SQLJDeploymentDescriptor: TRUE

10 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Chapter 3. Deploying dynamic query extensibility
functions

After a Java archive (.jar) packaging dynamic query extensibility functions is cretaed, a system
administrator must deploy it to IBM Cognos Analytics server.

Dynamic query extensibility function .jar files are deployed in the <installation_location>
\vbdataserver\lib\ext folder.

To add a new .jar file to this folder, copy the file to this location and then restart the Query Service in IBM
Cognos Administration.

To update or remove an existing .jar file, stop the Query Service, remove or replace the existing .jar file,
and then start the Query Service.

© Copyright IBM Corp. 2015, 2018 11

12 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Chapter 4. Programming considerations when
creating dynamic query extensibility functions

There are a number of prgramming issues you can consider when creating dynamic query extensibility
functions. They are described in the following topics.

Implicit type conversion

Implicit type conversion, also known as coercion, is an automatic type conversion performed by the
dynamic query engine. Implicit type conversion is used when argument types do not match the required
parameter types of a function.

For example, consider the following function:
CREATE FUNCTION formatCurrency(V DOUBLE PRECISION)
Invoking this function with a value of 10, as in

SELECT formatCurrency(10)
FROM (VALUES (0)) T

will result in the SMALLINT value 10 being implicitly converted to a DOUBLE PRECISION value. The tables
in Appendix B, “Implicit data type conversion rules,” on page 19 list all the allowable implicit type
conversions

If an allowable implicit type conversion is not available, there are two possible outcomes.

- The dynamic query engines pushes the function into the native SQL generated for the target database. If
the function is not valid or recognized, the user sees a database-specific error.

« Otherwise, a planning error occurs, as in:

XQE-PLN-0098 The vendor specific function "FO0" is not supported.

Overloaded functions

When creating functions, overloading is permitted. That is, functions with the same name can be defined
that differ in the number and type of input parameters. This feature is also found in various programming
languages.

For example, consider the following 3 functions, all named formatCurrency.

CREATE FUNCTION formatCurrency(V DOUBLE PRECISION)

CREATE FUNCTION formatCurrency(V DECIMAL(10,2))

CREATE FUNCTION formatCurrency(V FLOAT, LANG VARCHAR(32), COUNTRY
VARCHAR(32))

When formatCurrency is used in an expression, the dynamic query engine determines at run-time which
version of the function to call, based on a best fit technique.

© Copyright IBM Corp. 2015, 2018 13

Function resolution for overloaded functions

When a function is invoked and there are multiple functions available with the same name, the dynamic
query engine uses the following procedure to determine the function that fits best.

1. If a function with the same number and type of input parameters is available, that function is used.

2. Otherwise, a list of functions with the same number of input parameters that could be used with
implicit type conversion is made.

3. If this list contains more than one function, the functions are ranked and the function with the lowest
rank number is selected for execution.

4. If two or more functions share the lowest rank, the function that appears first in the data desciptor file
is chosen.

Ranking functions

Each implicit type conversion is assigned a rank number. The rank number for an implicit conversion is
equal to the difference in ordinal numbers for the original and converted data type. The ordinal numbers
for each data type are shown in the following table.

Table 7: Implicit data type ordinal values

Data type Ordinal
BOOLEAN

CLOB

DATE

TIME

TIMESTAMP

INTERVAL DAY-TIME
INTERVAL YEAR-MONTH
CHAR

VARCHAR

NCHAR

NVARCHAR

SMALLINT

INTEGER

BIGINT

FLOAT

DOUBLE PRECISION
DECIMAL 13

V| 0NN NI N|j]ojlolbdlwIDNM]IER]|O

[
o

=
=

=
N

For example, the rank number for converting from a SMALLINT data type to a BIGINT data type is 10 - 8 =
2. Rank numbers are summed for each implicit type conversion to arrive at the overall rank number for the
function.

14 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Sample overloaded function resolution

Consider the following function definitions.

CREATE FUNCTION foo(V SMALLINT)

CREATE FUNCTION foo(V INTEGER) ...

CREATE FUNCTION foo(V1l SMALLINT, V2 INTEGER) ..
CREATE FUNCTION foo(V2 SMALLINT, V2 BIGINT) ..
CREATE FUNCTION foo(V2 INTEGER, V2 INTEGER)
CREATE FUNCTION foo(V2 INTEGER, V2 BIGINT)

COTRhWNE

The function is invoked in an expression as foo (C1,C2) where C1lis an INTEGER and C2 is a SMALLINT.
Functions 1 and 2 cannot be invoked due to a mismatch in the number of input parameters, and functions
3 and 4 cannot be used because an INTEGER cannot be cast to a SMALLINT. Function 5 has a rank
number of 1 (SMALLINT to INTEGER cast) and function 6 has a rank number of 2 (SMALLINT to BIGINT
cast). Thus function 6 will be used to evaluate the expression foo(C1,C2).

Variadic functions

Variadic functions are functions that take a variable number of arguments. The dynamic query engine
supports variadic functions.

Consider the following data descriptor file snippet that describes a scalar function that takes a variable
number of integer arguments.

CREATE FUNCTION SUM_VALUES(IVAL INTEGER ...)
RETURNS BIGINT

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'thisjar:udf.Arrays.sum';

The Java implementation of this function would look like this:

package udf;
public class Arrays {
public static long sum(Integer... values) f{
long result = 0;
for (Integer value : values) 1
result += value;
%
return result;
%
%

This function could then be used as follows:

SELECT SUM_VALUES(10, 20) SUM, SUM_VALUES(C1, C2, C3, C4)
FROM T

Programming considerations when creating dynamic query extensibility functions 15

16 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Appendix A. Data type conversions from JDBC/SQL
data types to Java data types

The following table shows how Cognos SQL data types are mapped to Java data types. Cognos SQL data
types are the same as SQL data types and JDBC data types, except as noted in the table.

Table 8: Cognos SQL to Java data type mappings

Cognos SQL data type Java data type

CHAR String

VARCHAR String
LONGVARCHAR String

NCHAR String

NVARCHAR String
LONGNVARCHAR String

BINARY byte(]

VARBINARY byte(]
LONGVARBINARY byte(]

BOOLEAN boolean, Boolean
SMALLINT short, Short

INTEGER int, Integer

BIGINT long, Long

DECIMAL java.Math.BigDecimal
NUMERIC java.Math.BigDecimal
FLOAT float, Float

REAL float, Float

DOUBLE PRECISION (Note 1)

double, Double

DATE java.sgl.Date

TIME java.sgl.Time
TIMESTAMP java.sgl.Timestamp
CLOB java.sql.Clob

BLOB java.sql.Blob
INTERVAL DAY-TIME (Note 2) String

INTERVAL YEAR-MONTH (Note 2) String

ARRAY java.sqgl.Array
STRUCT java.sql.Struct
JAVA_OBJECT Object
DATALINK java.net.URL

© Copyright IBM Corp. 2015, 2018

17

Table 8: Cognos SQL to Java data type mappings (continued)

Cognos SQL data type Java data type

XML (Note 3) String

MULTISET java.sqgl.ResultSet

Note 1
The JDBC data type is DOUBLE.

Note 2
There is no equivalent JDBC data type.

Note 3

The JDBC data type is SQLXML.

18 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Appendix B. Implicit data type conversion rules

When resolving implicit type conversions, the dynamic query engine uses the following table to determine
which conversions are allowed. If a data type is not shown in the first column of this table, no casting from

it is possible.

Table 9: Implicit data type conversions

Original data type Converted data type

SMALLINT INTEGER, BIGINT, FLOAT,
DOUBLE, DECIMAL

INTEGER BIGINT, FLOAT, DOUBLE,
DECIMAL

BIGINT FLOAT, DOUBLE, DECIMAL

FLOAT DOUBLE, DECIMAL

BOOLEAN SMALLINT, INTEGER, BIGINT,
FLOAT, DOUBLE, CHAR,
VARCHAR, NCHAR, NVARCHAR

CHAR VARCHAR, NCHAR, NVARCHAR

VARCHAR CHAR, NCHAR, NVARCHAR

NCHAR CHAR, VARCHAR, NVARCHAR

NVARCHAR CHAR, VARCHAR, NCHAR

CLOB CHAR, VARCHAR, NCHAR,
NVARCHAR

TIME TIMESTAMP, CHAR, VARCHAR,
NCHAR, NVARCHAR

DATE TIMESTAMP, CHAR, VARCHAR,
NCHAR, NVARCHAR

TIMESTAMP CHAR, VARCHAR, NCHAR,
NVARCHAR

INTERVAL DAY-TIME CHAR, VARCHAR, NCHAR,
NVARCHAR

INTERVAL YEAR-MONTH CHAR, VARCHAR, NCHAR,
NVARCHAR

© Copyright IBM Corp. 2015, 2018

19

20 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Appendix C. BNF grammar description for the
deployment descriptor file

The structure of the deployment descriptor file can be described using the Backus—Naur Form as shown

here.

deploymentDescriptor ::= <SQLACTIONS> <EQL> <LBRACE> <DQUOTE> actionGroup <DOUBLE_QUOTE>

<RBRACE>

actionGroup ::= installActions | removeActions

installActions ::= <BEGIN> <INSTALL> ddl <END> <INSTALL>

removeActions ::= <BEGIN> <REMOVE> <END> <REMOVE>

ddl ::= SQLInvokedRoutine (SQLInvokedRoutine)=*

SQLInvokedRoutine ::=
(<CREATE> SQLInvokedFunction | <CREATE> SQLInvokedAggregate | <CREATE> SQLInvokedProcedure)
<SEMICOLON>

SQLInvokedFunction ::=

<FUNCTION> SchemaQualifiedRoutineName SQLParameterDeclarationList ReturnsClause
(ResultCast)? RoutineCharacteristics (RoutineCharacteristics)* RoutineBody

SQLInvokedAggregate ::=
<AGGREGATE> SchemaQualifiedRoutineName SQLParameterDeclarationlList ReturnsClause
(ResultCast)? RoutineCharacteristics (RoutineCharacteristics)* RoutineBody

SQLInvokedProcedure ::=
<PROCEDURE> SchemaQualifiedRoutineName SQLParameterDeclarationList (ReturnsClause)?
RoutineCharacteristics (RoutineCharacteristics)* RoutineBody

SchemaQualifiedRoutineName ::= QualifiedIdentifier ReturnsClause ::= <RETURNS> DataType
ResultCast ::= <CAST> <FROM> DataType

RoutineCharacteristics ::=
LanguageClause
| ParameterStyleClause
| NullCallClause
| ReturnedResultSets
| DeterministicCharacteristic
| SQLDataAccessIndication

LanguageClause ::= <LANGUAGE> (<JAVA> | <SQL> | <IDENTIFIER>)

arameterStyleClause ::= <PARAMETER> <STYLE> (<JAVA> | <SQL> | <GENERAL>)
NullCallClause ::= <RETURNS> <NULL> <ON> <NULL> <INPUT> | <CALLED> <ON> <NULL> <INPUT>
ReturnedResultSets ::= <DYNAMIC> <RESULT> <SETS> <INTEGER_LITERAL>
DeterministicCharacteristic ::= <DETERMINISTIC> | <NOT> <DETERMINISTIC>

SQLDataAccessIndication ::=
<NO> <SQL> | <CONTAINS> <SQL> | <READS> <SQL> <DATA> | <MODIFIES> <SQL> <DATA>

RoutineBody ::= (SQLRoutineBody | ExternalBodyReference)
SQLRoutineBody ::= <RETURN> (expression | CursorOrCallSpecification)
ExternalBodyReference ::= <EXTERNAL> <NAME> <STRING_LITERAL>
SQLParameterDeclarationlList ::=
<LPAREN> (
[SQLParameterDeclaration (<COMMA> SQLParameterDeclaration)=*]
[

)? <RPAREN>

SQLParameterDeclaration ::= (ParameterMode)? Identifier DataType (<AS> <LOCATOR>)?
(<RESULT>)?

ParameterMode ::= (<IN> | <OUT> | <INOUT>)

© Copyright IBM Corp. 2015, 2018 21

Identifier ::= <IDENTIFIER>
DataType ::= (ArrayType | MultisetType | SimpleType)

SimpleType ::= (
CharacterStringType

| BinaryStringType

| NumericType

| IntervalType

| DateTimeType

| BooleanType

| RowType

| StructType

| BlobType

| ObjectType

| XmlType

| DataLinkType

| PeriodType

| NullType

| AnyType

)

MultisetType ::= SimpleType <MULTISET>

RowType ::= (
<ROW> <LPAREN> Field (<COMMA> Field)* <RPAREN>
| <TABLE> (<LPAREN> Field (<COMMA> Field)* <RPAREN>)?
)

StructType ::= <STRUCT> <LES> Field (<COMMA> Field)* <GRT>
Field ::= Identifier DataType

CharacterStringType ::=
(<CHARACTER> | <CHAR>) <VARYING> (<LPAREN> IntegerValue <RPAREN>)?
| (<CHARACTER> | <CHAR>) (<LPAREN> IntegerValue <RPAREN>)?
| <VARCHAR> (<LPAREN> IntegerValue <RPAREN>)?
| (<NCHAR> | (<NATIONAL> (<CHARACTER> | <CHAR>))) <VARYING>
(<LPAREN> IntegerValue <RPAREN>)?
| (<NCHAR> | (<NATIONAL> (<CHARACTER> | <CHAR>))) (<LPAREN> IntegerValue <RPAREN>)?
| <NVARCHAR> (<LPAREN> IntegerValue <RPAREN>)? | <STRING>

BinaryStringType ::=
<BINARY> (<LPAREN> IntegerValue <RPAREN>)?
| <BINARY> <VARYING> <LPAREN> IntegerValue <RPAREN>
| <VARBINARY> <LPAREN> IntegerValue <RPAREN>

NumericType ::=
(<DEC> | <DECIMAL> | <NUMERIC>)
(<LPAREN> IntegerValue (<COMMA> IntegerValue)? <RPAREN>)?
| <SMALLINT>
| (<INTEGER> | <INT>) (<LPAREN> IntegerValue <RPAREN>)?
| <BIGINT>
| (<FLOAT> | <REAL>) (<LPAREN> IntegerValue <RPAREN>)?
| <DOUBLE> (<PRECISION>)?
| <NUMBER>

IntervalType ::=
<INTERVAL> ((DatetimeField (<LPAREN> IntegerValue <RPAREN>)?
(<TO> (DatetimeField | <SECOND> (<LPAREN> IntegerValue <RPAREN>)?))?
| <SECOND> (<LPAREN> IntegerValue (<COMMA> IntegerValue)? <RPAREN>)?))?

DateTimeType ::=
<DATE>
| <TIME> (<LPAREN> IntegerValue <RPAREN>)? <WITH> <TIME> <ZONE>
| <TIME> (<LPAREN> IntegerValue <RPAREN>)?
| <TIMESTAMP> (<LPAREN> IntegerValue <RPAREN>)? <WITH> <TIME> <ZONE>
| <TIMESTAMP> (<LPAREN> IntegerValue <RPAREN>)?

DatetimeField ::= <YEAR> | <MONTH> | <DAY> | <HOUR> | <MINUTE>

BooleanType ::= <BOOLEAN>

ArrayType ::= SimpleType <ARRAY_CONSTRUCTOR_START> IntegerValue (<RBRACKET> |
<RBRACKET_TRIGRAPH>)

BlobType ::= <BLOB> | <CLOB>

ObjectType ::= <JAVA_OBJECT> XmlType ::= <XML>

DatalLinkType ::= <DATALINK> PeriodType ::= <PERIOD> <LPAREN> DateTimeType <RPAREN>

22 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

NullType ::= <NULL> AnyType ::= <ANYTYPE>

BNF grammar description for the deployment descriptor file 23

24 1BM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Notices

This information was developed for products and services offered worldwide.

This material may be available from IBM in other languages. However, you may be required to own a copy
of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
This document may describe products, services, or features that are not included in the Program or
license entitlement that you have purchased.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
Attention: Licensing

© Copyright IBM Corp. 2015, 2018 25

3755 Riverside Dr.
Ottawa, ON

K1V 1B7

Canada

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user's

e name

 user name

« password

for purposes of

 session management

- authentication

« enhanced user usability

« single sign-on configuration

 usage tracking or functional purposes other than session management, authentication, enhanced user
usability and single sign-on configuration

These cookies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM's Privacy Policy at https://www.ibm.com/privacy/us/en/.

26 Notices

https://www.ibm.com/privacy/us/en/

Trademarks

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "
Copyright and trademark information " at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

- Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 27

http://www.ibm.com/legal/copytrade.shtml

28 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Query Extensibility Developer Guide

Index

A

audience of document v

D

description of product v

P

purpose of document v

29

30

	Contents
	Introduction
	Chapter 1. Overview of dynamic query extensibility
	Types of dynamic query extensibility functions
	Implementing and using dynamic query extensibility functions
	Sample dynamic query extensibility functions

	Chapter 2. Creating dynamic query extensibility functions
	Writing dynamic query extensibility functions
	Writing scalar functions
	Writing aggregate functions
	Writing table functions

	Creating the deployment descriptor file
	Creating the Java Archive file

	Chapter 3. Deploying dynamic query extensibility functions
	Chapter 4. Programming considerations when creating dynamic query extensibility functions
	Implicit type conversion
	Overloaded functions
	Variadic functions

	Appendix A. Data type conversions from JDBC/SQL data types to Java data types
	Appendix B. Implicit data type conversion rules
	Appendix C. BNF grammar description for the deployment descriptor file
	Notices
	Index

